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Navigation is becoming more common in all areas of industry and commercial sectors.

The main tool being utilized is GPS. However there are situations in which higher levels

of accuracy are required which can not be achieved by GPS alone. This thesis will discuss

the design and implementation of an inertial navigation system (INS) using an inertial

measurement unit (IMU) and GPS. The INS is capable of providing continuous estimates

of a vehicle’s position and orientation. Typically IMU’s are very expensive sensors; how-

ever this INS will use a “low cost” version costing around $5,000. Unfortunately with low

cost also comes low performance and is the main reason for the inclusion of GPS into the

system. Thus the IMU will use accelerometers and gyros to interpolate between the 1Hz

GPS positions. All important equations regarding navigation are presented along with dis-

cussion. Results are presented to show the merit of the work and highlight various aspects

of the INS.



CHAPTER 1
INTRODUCTION

Navigation has been present for thousands of years in some form or another. The

birds, the bees, and almost everything else in nature must be able to navigate from one

point in space to another. For people, navigation had originally included using the sun and

stars. Over the years we have been able to develop better and more accurate sensors to

compensate for our limited range of senses. This thesis will discuss work using one of

these advanced sensors, an inertial measurement unit (IMU). This sensor, coupled with the

proper mathematical background, is capable of detecting accelerations and angular veloci-

ties and then transforming those into the current position and orientation of the system. 

Inertial Navigation

Unfortunately Inertial Navigation Systems (INS) have been relegated to the realm of

military applications due to the extreme cost of the systems. High precision components

must be incorporated into the IMU to produce good results. The most critical are the

gyros, which are used to determine the orientations of the system. The orientation is criti-

cal to properly account for gravity. If gravity is accounted for in the accelerometer read-

ings, then the system thinks it is moving when in fact it is not. Also high quality

accelerometers are important. Ideally their should be no bias (or very low at least) and

behave in a simple linear fashion. Unfortunately in real life, noise, disturbances, drifts,

misalignments, and manufacturing complications enter into the equation and make devel-

oping an INS difficult.
1
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If INS is so expensive, how do you create a low cost solution? The saving grace of low

cost INS is the Global Positioning System (GPS). This system provides accuracies of 10 m

95% of time at an update rate of 1 Hz. The receiver only costs $100-$200 depending on

size, features, etc. This system now provides a way to bound the errors in an INS and the

use of lower cost components in the IMU. Thus cheap but accurate INS systems can be

developed for all sorts of applications that previously were cost prohibitive (i.e. consumer

cars, remotely controlled vehicles, autonomous vehicles, military munitions, etc).

Previous Work

INS’s have been developed for a wide range of vehicles. Sukkarieh [1] developed a

GPS/INS system for straddle carriers that load and unload cargo ships in harbors. When

the carriers would move from ship to ship, they would periodically pass under obstruc-

tions that would obscure the GPS signal. Also, as the carriers got closer to the quay cranes,

it became more difficult to get accurate positions due to the GPS signal being reflected

about the crane’s metal structure. This increases the time of flight of the GPS signal and

results in jumps in the position. During these times the INS would then take over, and

guide the slow moving carrier until a reliable GPS signal could be acquired.

Mandapat [2] developed a low cost INS for Dr. Carl Crane here at University of Flor-

ida to replace their current system which is highly accurate, but very expensive. The cur-

rent system is the Honeywell Modular Azimuth Positioning System (MAPS) and Ashtech

Z-12 Differential GPS. This system has an accuracy of less than 10 cm at a data rate of 10

Hz. The new system uses an IMU also developed from Honeywell which has ring laser

gyros and costs about three times the IMU used in this work. Mandapat’s GPS/INS pro-

duced positional errors within 1 to 2 meters of the MAPS system at a fraction of the cost.
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Bennamoun et al. [3] developed a GPS/INS/SONAR system for an autonomous sub-

marine. The SONAR added another measurement to help with accuracy, and provided a

positional reference when the GPS antenna got submerged and could not receive a signal.

Ohlmeyer et al. [4] developed a GPS/INS system for a new smart munitions, the EX-

171. Due to the high speed of the missile, update rates of 1 second from a GPS only solu-

tion were too slow, and could not provide the accuracy needed. The GPS/INS smart muni-

tions are cheaper than their more accurate cousins, Laser Guided Munitions (LGM). They

are also immune to conditions which can greatly deteriorate the accuracy of LGM, such as

bad weather, heavy dust/snow storms, and fog. This integration of GPS/INS is a growing

trend for military munitions (i.e. bombs, missiles, artillery shells, remotely operated vehi-

cles). Boeing [5] has developed a GPS/INS kit that converts old gravity bombs into preci-

sion-guided smart bombs. A control unit is attached to the end of the warhead which

contains the GPS/INS system and battery powered motors to control the flight of the

bomb. Actual use by American aircraft in Afghanistan during the 2002 War on Terrorism

proved these bombs can strike within 13 meters of their intended target.

Figure 1-1.  Boeing conversion kit which transforms a standard gravity bomb into a smart
bomb.
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Thesis Outline

The remainder of this thesis will flow as follows. Chapter 2 will discuss GPS and

familiarize the reader with how it works. Chapter 3 will introduce all of the key concepts

for inertial navigation and derive all important equations. Chapter 4 will introduce prob-

lems inherent in inertial navigation and provide the necessary background for the

extended kalman filter used which will aid in correcting these errors. Chapter 5 will pro-

vide background on hardware used in inertial navigation and the IMU and GPS that were

used in this work. Chapter 6 will cover the experimental setup and present results using

the developed INS. Various aspects of the INS’s performance will be presented to show its

merit. Finally chapter 7 will present the conclusions drawn from this work.



CHAPTER 2
WHERE IN THE WORLD IS WALDO

This chapter will give an overview of the global positioning system (GPS). The pur-

pose is to provide the reader with the basic fundamental understanding of how GPS works

and some of the technologies involved. Most of the information in this chapter comes

from three sources: Dr. Peter H. Dana [6], Garmin Users Manual [7], and Federal Aviation

Administration (FAA) [8].

GPS Network Overview

The GPS network of satellites contains a minimum of 21 satellites that orbit the Earth

at an altitude of about 11,000 nautical miles. They orbit once every 11 hours and 58 min-

utes, so that they drift in the sky 4 minutes a day (they drift 2 minutes each orbit). There

are 6 different orbits that the satellites can be in, with multiple satellites in each orbit. Each

possible orbit is inclined 55 degrees with the equator with no orbits going directly over the

poles.

Figure 2-1.  Orbits of GPS network. Figure 2-2.  Standard GPS satellite
in orbit.
5
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How GPS Works

Finding your location using GPS is accomplished by triangulating your position from

the known positions of GPS satellites. Distance measured from your position to the satel-

lite is measured by time of flight of a signal sent from the GPS satellite. The signal sent

from the satellite tells its location and the time the signal was sent. Since the signal travels

at the speed of light, the distance from the receiver to the satellite can be calculated. With

a GPS receiver and one satellite, you can determine your possible location on a sphere

with the satellite at the center. Unfortunately this is not very useful. With two satellites we

get two spheres that are centered at different locations. Now our position lies at the inter-

section of these two spheres, which is a circle. Unfortunately this is still not useful. Now

expanding the our network of satellites to three and a third sphere we get two possible

locations the receiver can be in 3D space. Immediately one of the two possible solutions

can be discarded, leaving us with our position. Thus with three satellites, we can easily

determine our position in 3D space. But this now raises the question, how accurately can

we calculate this position? This question will be answered in the next section which cov-

ers accuracy.

NMEA Messages

The signals or messages that are sent from the satellites are defined by the National

Marine Electronics Association (NMEA). This group has defined standards for just about

every possible device used for navigation and instrumentation. In fact the standards

defined for use with GPS actually define not one, but many different messages designed to

provide every possible piece of useful information. NMEA also allows hardware vendors

to define their own proprietary messages. An example sentence might look like:
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$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*42

The current NMEA standard is 0183 version 2.0 which transmits data at 4800 baud.

WGS-84 

There are hundreds of datum that have been defined all over the world and through out

the years. Some of these datums are regional (such as the US datums NAD27 CONUS

used by the USGS and NAD83 or the European 1979) and some are global (such as the

WGS72). The World Geodetic System (WGS-84) is a world wide datum with its origin

located at the center of the Earth and defines a reference ellipse. The reference ellipse is

itself defined by the major and minor axes of the Earth, which were determined by exam-

ining all known data in 1984. The data came from every possible source including satel-

lies. This is the datum which GPS uses to determine altitude above the reference ellipse.

Grids

Now that we had defined a datum for out coordinate system, we need to be able to

divide the world up into nice pieces. Most people are familiar with latitude and longitude

which accomplish this division of the world. However the problem with this system is that

Listing 2-1.  Meaning of example NMEA message fields

$                    Start character of message
GGA             Global Positioning System Fix Data      
123519          Fix taken at 12:35:19 UTC      
4807.038,N   Latitude 48 deg 07.038’ N      
01131.000,E  Longitude 11 deg 31.000’ E      
1                    Fix quality: 0 = invalid
                                          1 = GPS fix
                                          2 = DGPS fix      
08                  Number of satellites being tracked      
0.9                 Horizontal dilution of position      
545.4,M        Altitude, Meters, above mean sea level      
46.9,M          Height of geoid (mean sea level) above WGS84  ellipsoid      
(empty field) time in seconds since last DGPS update      
(empty field) DGPS station ID number      
*42                 The checksum data, always begins with *
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the world is round and not an nice even sphere. Navigation has defined one nautical mile

as 1 minute of latitude along the equator. Since there are 60 minutes to each degree, there

are 60 nautical miles per degree of latitude. The problem occurs as we increase our longi-

tude, the distance between lines of latitude decrease. Thus at 45 degrees longitude there

are only 42.426 nautical miles. GPS uses a more precise system called the Universal Tans-

verse Mercator (UTM). This divides the world up into 60 slices with minimal distortion

compared to the traditional latitude/longitude system (an example of this is shown in Fig-

ure 2-2).

Accuracy

Time is a critical value in the equations that need to be solved to determine the

receiver’s position in 3D space (to well under a micro-second). Each satellite in the GPS

network that orbits the Earth is equipped with an atomic clock so that they know exactly

when they send a signal (which is encoded in the signal itself using a pseudo-random sig-

nal of 1023 bits). Unfortunately these clocks are very large and expensive. Thus it would

Figure 2-1.  An airplane receiving a 3D
position from 4 GPS satellites.

Figure 2-2.  How the UTM breaks up the
surface of the world.
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not be feasible to embed these into every receiver on the market. So a compromise was

made to include more inexpensive clocks into the receivers, but instead of treating time as

a known in the GPS equations, it becomes a variable. Thus now a fourth satellite is

required to reach a solution for the receiver’s 3D position. The assumption is also made

that any error in the system comes from our clock being in error (which is an incorrect

assumption). Thus the time variable can be changed to reduce the error in the solutions

from the four satellites (Figure 2-1).

Once the data is collected from the satellites, a set of 7 simultaneous equations and

unknowns are solved. The unknowns are positions (x, y, z), doppler (dx, dy, dz), and time.

Proprietary methods are employed when more that 4 satellites are seen by the GPS to

solve the now overdetermined solution.

The equation from Pythagoras for solving a receiver’s position is

[2-1]

where X, Y, and Z are the position of the receiver that we are trying to find, T is the time

error at the receiver, Prs is the estimated range from the receiver to the satellite, and Xs,

Ys, and Zs are the are the positions for each of the satellites. The Es term is the sum of all

errors in the system, such as: clock errors, troposphere errors, ionosphere errors, etc. From

this equation, only the receiver’s X, Y, Z position and T are unknown. But with four satel-

lites we get can get 4 equations. However in reality (as already mentioned above) the

equations used have 7 unknowns which include the 4 mentioned here plus the doppler data

dx, dy, and dz.

Generally (since SA1 was turned off) most companies will specify the accuracy of

their GPS equipment as follows:

Prs T Es+ + X Xs–( )2 Y Ys–( )2 Z Zs–( )2+ +=
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Differential GPS

There are several kinds of DGPS available. The most common is the kind that receives

corrections from a radio beacon. The beacon listens to transmissions which the U.S. Coast

Guard sends containing corrections which provide better accuracy than stand alone GPS.

This section will concentrate on a new type called Wide Area Augmentation System

(WAAS) which is a product of the FAA to increase the accuracy of GPS for aviation pur-

poses.

WAAS [9] utilizes ground stations which detect and send GPS error information to a

Master Control site. The Master Control site uses this information to compute in order of

importance or effect: 

1. Integrity information 

2. Ionospheric and Tropospheric delays 

3. Short-term and long term satellite clock errors 

4. Short-term satellite position error (Ephemeris) 

5. Long term satellite position error (Almanac) 

This information is relayed to two WAAS geosynchronous Inmarsat satellites (AOR-

W and POR) from the Master Control Stations and is re-broadcast to user receivers as a

1. Selective Availability (SA) is a method used by the government to degrade the GPS signal glo-
bally so foreign powers and terrorists do not have precision positioning capabilities to attack the
U.S or its allies. However on May 1, 2000, President Clinton ended the use of SA in an effort to
increase its acceptance and use as a positioning system worldwide.

Table 2-1: Accuracy of GPS 95% of the time.

Method Accuracy

GPS 10 m

DGPS (Coast Guard corrections) 1-5 m

DGPS (WAAS) < 3
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grid of corrections. From this grid, a GPS receiver interpolates the proper Ionospheric cor-

rection based on its position in the grid. The “extrapolation” of this information outside

the WAAS coverage is less and less precise -to the point of INDUCING errors. Other

errors are not location dependant. 

The WAAS correction information is different than RTCM corrections (transmitted by

the Coast Guard for uses in DGPS) because WAAS decomposes the errors into their pri-

mary elements (Iono, clock, & ephemeris). RTCM, on the other hand, broadcasts pseudo

range corrections which are the sum of all error sources as observed by the RTCM refer-

ence station. This information is only valid relatively close to the reference station. This is

why spatial decorrelation is such a large factor for RTCM, but not for WAAS (thus the

reason it is “wide area” augmentation). 

Figure 2-1.  WAAS coverage areas. Currently only
the Pacific (pink) and Atlantic (yellow) satellites
are up and running.



CHAPTER 3
INERTIAL NAVIGATION

This chapter will introduce strap-down inertial navigation. Derivation for the naviga-

tional equations will be presented and discussed.

Overview of Inertial Navigation Systems

A basic flow chart of how inertial navigation works is shown in Figure 3-1. However,

this is not all that needs to be done to have an INS that works. There are many problems

with noise and unbounded error that must be handled to get any meaningful result out of

the INS.

Gimballed INS

The first type of INS developed was a gimballed system. The accelerometers are

mounted on a motorized gimballed platform which is always kept aligned with the naviga-

tion frame. Pickups are located on the outer and inner gimbals which keep track of the atti-

tude of the stabilized platform relative to the vehicle on which the INS is mounted. This

setup has several detractors which make it undesirable.

• Bearings are not frictionless.

• Motors are not perfect (i.e. dead zones, etc.).

• Consumes power to keep the platform aligned with the navigational frame which is
not always good on an embedded system.

• Cost is high due to the need for high quality motors, slip rings, bearings and other
mechanical parts. Thus the typical customers for such systems were military uses on
planes, ships, and intercontinental ballistic missiles.
12
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• Recalibration is difficult, and requires regular maintenance by certified personnel
which could be difficult on an autonomous vehicle. Plus any maintenance that must be
performed on the system (i.e. replace bearings, motors, etc.) must be done in a clean
room and then the system must go through a lengthy recertification process.

Strap-down INS

A strap-down system is a major hardware simplification of the old gimballed systems.

The accelerometers and gyros are mounted in body coordinates and are not mechanically

moved. Instead, a software solution is used to keep track of the orientation of the IMU

(and vehicle) and rotate the measurements from the body frame to the navigational frame.

This method overcomes the problems encountered with the gimballed system, and most

importantly reduces the size, cost, power consumption, and complexity of the system.

Reference Frames and Rotations

There are many different coordinate systems to choose from when doing navigation.

Each has its own advantages and disadvantages so their use is really application specific.

• Earth Centered Inertial (ECI), also referred to as inertial for short. This system is fixed
in inertial space with its origin located at the center of the Earth. The Earth rotates

around the z-axis and the x axis is aligned with the fixed stars.1

1. In reality the stars move, but their change in position relative to Earth is small enough to be
neglected.

Figure 3-1.  A flow chart of a strap-down INS which takes accelerations and rotation
rates from the IMU and produces position, velocity, and attitude of the system.
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• Earth Centered Earth Fixed (ECEF) is similar to the inertial system except the axes
rotate with the Earth. This system is also used by the U.S. Defense Mapping Agency,
which is good since the military maps the world in a grid defined in meters not latitude
and longitude. Since we will not be using latitude and longitude, this will be a better
system to work with.

• Local Geodetic Vertical (LGV), this system is more convenient when used with lati-
tude and longitude. This system proved to be more complex, harder to understand, and
more a computational system to work in though.

• Wander Azimuth Frame (WA) is used in high latitude regions where singularities
hamper the previous systems. The previous systems always have an axis that faces
North (referred to as North slaved), however the WA adds an additional variable alpha
which allows the north facing axis to rotate. This is because magnetic north originates
around Greenland, but the navigation equations refer to true north which is located at
the rotational axis of the Earth. Thus as aircraft or ballistic missiles pass over the North
Pole, their compasses will point to Greenland while navigational north will point
somewhere else. The angular difference between the two is alpha.

• Body reference frame is the coordinate system associated with the vehicle. Typically,
but not always, the x-axis points out the front of the vehicle, the y-axis is pointed out
the right side, and the z-axis is pointed downward. This is the coordinate system in
which all measurements will be taken.

The reference frames which were used are shown in Figure 3-2 and Figure 3-3. Sev-

eral rotation matrices are needed to transition between the various reference frames. A

more detailed look at rotations is presented in Appendix A. The first rotation takes mea-

surements in the body frame and puts them into the navigation frame,

[3-1]

Table 3-1: Coordinate system subscripts and superscript definitions.

Symbol Frame

n navigation

b body

c ECI

e ECEF

Rb
n

cθcψ sφsθcψ cφsψ– sφsψ cφsθcψ+

cθsψ cφcψ sφsθsψ+ cφsθsψ sφcψ–

sθ– sφcθ cφcθ

=
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where  is roll,  is pitch, and  is yaw. This rotation is the sequence 1-2-3, which is

typically used in aerospace applications. This is a type 1 sequence which has singularities

when the pitch is +/- 90 degrees since at this angle both the roll and yaw have similar

effects. Thus for fighter aircraft which typically encounter this range, other methods must

be included to account for this problem.

The next rotation will transform points from the ECEF frame to the navigation frame,

[3-2]

where  is latitude and  is longitude. Now with these two rotations we can get another

rotation, the one we really need.

[3-3]

φ θ ψ

Re
n

sφcλ– sφsλ– cφ
sλ– cλ 0

cφcλ– cφsλ– sφ–

=

φ λ

Rb
e Rn

eRb
n=

ure 3-2.  The XYZ frame is the inertial
e ECEF and the NWU frame is the local

igational frame, where the axes are north
, west (W), and up (U).

Figure 3-3.  Body frame which is aligned with
the axes of the IMU. The center of this frame i
located at the origin of the navigational frame.
Fig
fram
nav
(N)

s
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Modelling the Earth

Periodically all satellite and geodetic data is used to determine the best fitting Earth

model. The latest is the World Geodetic System 1984 (WGS 84) and results of some of the

important constants are shown below.

Position on the Earth’s Surface

Using the model, an extensive derivation (not shown here) can be done to determine a

vehicle’s position on the Earth given its latitude, longitude, and altitude. The resulting

equations are shown below.

[3-4]

[3-5]

[3-6]

[3-7]

[3-8]

Table 3-2: Earth model constants (WGS 84)

Const Value

R 6,378,137.0 m

7.292115E-5 rads/s

9.7803267715 m/s^2

0.0193185138639

ωie

gWGS0

gWGS1

Rmeridian

Re 1 ε2–( )

1 ε2 φsin2–3 2⁄
-------------------------------------=

Rnormal

Re

1 ε2 φsin2–
--------------------------------=

xECEF Rnormal H+( ) φ λcoscos=

yECEF Rnormal H+( ) φ λsincos=

zECEF Rmeridiannp H+( ) φsin=
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Gravity Model

The Earth’s gravity field is not constant over its surface. One gravity model used to

define the expected gravity seen at any point on the Earth is shown below.

[3-9]

[3-10]

Navigation Equations

Looking at Newton’s second law of motion, a change in motion occurs as a force is

applied to a body. Now, dividing both sides of the equation by the mass of the object

results in the specific force.

[3-11]

In inertial navigation, accelerometers detect accelerations due to forces exerted on the

body. These forces are typically referred to as specific forces (S). Thus readings from the

IMU will be referred to as specific forces, which are independent of the mass. 

Position and Velocity

Using the Coriolis theorem, the equations will be derived in the ECI (inertial) refer-

ence frame. Remember the ECI frame has its z-axis aligned with the axis of rotation of the

Earth and is fixed in inertial space so it does not move.

The Coriolis theorem states that the total velocity of a vehicle ( ) in a non-rotating

reference frame is equal to its ground speed ( ) plus the added speed due to the rotation

of the Earth. Here the subscript i refers to the non-rotating inertial frame, ECI.

g gWGS0

1 gWGS1 φsin2+( )
1 ε2 φsin2–( )1 2/

-------------------------------------------⋅=

gSHC
c

ξg

ηg–

g

=

f
m
---- a S= =

vi

vs
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[3-12]

where the rotation of the Earth is  and r is the vehicles position. Now

differentiating this with respect to the inertial reference frame.

[3-13]

The rotation of the earth is constant ( ), therefore its derivative is zero

( ). Now substituting for the velocity from the original equation we get.

[3-14]

The acceleration term on the left hand side of the equation can be replaced with all of the

accelerations in the system.

[3-15]

Where  is the specific force (i.e. all of the accelerations seen by the IMU) and  is the

gravity model of the system. Finally solving for the acceleration of the vehicle results in

the navigation equations which when integrated will turn IMU accelerations into veloci-

ties.

[3-16]

where the term subtracted from the specific force is the coriolis acceleration and the term

subtracted from the gravity is the centripetal acceleration. Although these terms are small,

as we will see, small constant acceleration offsets produce a velocity ramp when inte-

grated. This in turn produces a quadratic position change when the velocity ramp is inte-

grated.

vi vs Ωie ri×+=

Ωie 0 0 ωie

T
=

v· i v· s Ω
·

ie ri Ωie v× i+×+=

Ωie const=

Ω
·

ie 0=

v· i v· s Ωie vs Ωie Ωie r× i[ ]×+×+=

Si gi+ v· s ω· ie vs Ωie Ωie r× i[ ]×+×+=

Si gi

v· s Si Ωie vs gi Ωie Ωie r× i[ ]×–+×–=
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Now these equations, which where derived in the inertial frame, must be transformed

into the ECEF (Earth) reference frame. Luckily this is an easy task.

[3-17]

Thus the inertial equation becomes:

[3-18]

These equations can also be represented in a state space form.

[3-19]

where P is the position and V is the velocity vector in the ECEF coordinate system. Also

the cross products in the previous equations are replaced with a skew matrix.

[3-20]

Attitude

The attitude of the IMU is need so that the measurement taken (which are in the body

frame) can be rotated in to the Earth frame. To accomplish this, quaternions will be used

to represent the attitude of the IMU (and hence the vehicle itself since the IMU is bolted

on to the vehicle). But why use quaternions and what the hell is a quaternion1 any ways? 

Well lets answer the first part of that question. Quaternions have the following good

properties (in no particular order) for use in navigational systems.

1. See Appendix A for a more detailed explanation of quaternions.

v·e v· s Ωie vs×–=

v· s Se 2Ωie ve ge Ωie Ωie r× e[ ]×–+×–=

V· e

P· e

2Ωie
e– Ωie

e Ωie
e–

I 0

V

P

Rc
e Rb

e

0 0

gSHC
c

Sb
+=

Ωie
e

0 ω– ie 0

ωie 0 0

0 0 0

=
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• They are computationally efficient. Subsequent rotations (for example a rotation about
the x-axis followed by the rotation about the y-axis) is accomplished by multiplying a
4x4 by a 4x1. While in Euler space, two subsequent rotations would be handled by
multiplying a 3x3 by 3x3 matrix.

• Quaternions require less memory to represent them. Euler angles require nine ele-
ments to represent a rotation (3x3 matrix) while a quaternion only requires four ele-
ments. However this is a weak point, but some embedded applications do have very
constrained memory requirements.

• The propagation of a quaternion in time always results in an orthogonal rotation
matrix. An IMU will supply angular rates from its gyros which will contain noise. Ide-
ally if the IMU is rotated 90 degrees in a plane, the integration of the data from the
gyros will properly reflect this 90 degree rotation. However, since there is noise, the
IMU will report rotations on all axes. The real problem is that the resulting 3x3 rota-
tion matrix is not guaranteed to be orthogonal any more which means that the inverse
of the rotation matrix is not equal to the transpose. Now extra steps must be taken at
each time step to make the rotation matrix orthogonal again.

To answer the second part of the question, a quaternion is a way to represent the orien-

tation of a rigid body, but also it is a way to represent a rotation about an arbitrary axis in

space. A quaternion can be thought of as a complex number which contains a real and

imaginary part. However, the imaginary part of a quaternion contains three values while

the real part only has one. The attitude of an object is assumed to be represented by a

quaternion in which the imaginary part is the elements 1-3 and the real part is the fourth

element.

 [3-21]

                [3-22]

where  is a unit vector corresponding to the axis of rotation and  is the angle of rota-

tion.

q q1 3– q4

T
=

q1 3– q1 q2 q3

T
n̂

θ
2
--- 

 sin⋅= = q4
θ
2
--- 

 cos=

n̂ θ
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For navigation we will need to be able to convert from roll, pitch, and yaw into quater-

nion space and back again. This is easily done by the following set of equations.

                         [3-23]

Alternatively a rotation matrix can be calculated directly from the elements of a

quaternion. This is useful since there are no sine or cosine functions called during this pro-

cess. Trigonometric functions tend to be very computationally expensive and in systems

that require high performance are replaced with lookup tables or other faster (less accu-

rate) implementations.

Once the attitude is put into quaternions, the kinematic differential equations for atti-

tude rotation are given as follows. 

[3-24]

[3-25]

This equation allows readings from the gyros to be used to update the current quater-

nion, which represents the attitude of the system.
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Summary of Navigational Equations

The navigation equations for the Earth Centered Earth Fixed (ECEF) system are com-

bined below in state space form.

[3-26]

         [3-27]

where  is the rotation rate of the earth, R is a rotation matrix between different coordi-

nate systems, P is the position and V is the velocity vector in the ECEF coordinate system

as denoted by the superscript e. 
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CHAPTER 4
CORRECTING INERTIAL NAVIGATION

Low cost inertial navigation unfortunately is not a simple task. There are numerous

sources of errors, noise, and disturbances that must be overcome. This chapter will discuss

some of these problems and outline a solution. The solution will come in the form of the

extended kalman filter. The necessary equations will be derived and discussed.

Sources of Error

This section will provide a quick overview of some difficulties present in inertial nav-

igation, and provide a better understanding for the difficulties encountered with the IMU.

Bias and Drift

These are the most devastating effectors on accuracy to an IMU. Drift rate for the

gyros and accelerometer bias are small offsets which the IMU incorrectly reads, that must

be properly accounted for. The bias has a quadratic effect on the position derived from the

IMU.

[4-1]

Table 4-1: Positional error that results from biases after a time of 100 seconds and 30 
mins.

Bias (m/s^2)
Error (m)
t=100 sec.

Error (m) 
t = 30 mins

.1 500 162000

.01 5 16200

.001 .5 1620

.0001 .05 162

error
1
2
---bias t2⋅=
23
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Looking at the Table 4-1 it becomes apparent that determining the bias is of critical

importance if any accurate measurement is expected.

The drift rate has a similar, and an equally massive impact on the position of a system.

If a drift is not properly accounted for, and the IMU thinks it is rotating, then the naviga-

tion equations will not properly account for gravity and the system will think it is moving

due to a maximum acceleration of 9.8  depending on how far the system has drifted.

Temperature

The IMU’s accelerometers and gyros are sensitive to temperature as shown by Nebot

and Durran-Whyte [10]. Thus as the temperature of the IMU changes, the associated bias

and drift will change until the temperature reaches steady state or remains the same. This

is not critical in our application, we just wait for the IMU to reach steady state before trust-

ing the readings. However if this system was mounted in an aircraft which changed alti-

tude and temperatures, this would be a problem.

Hysteresis

The drift rates and accelerometer biases tend to change each time the unit is switched

on. This is due to the fact that measurements are noisy. Typically there is a low pass filter

used to remove some of this noise before the measurements are used in the navigation

equations (also realistically, there tends to be low pass filtering somewhere in the system

due to hardware limitation because not everything has infinite bandwidth). When random

noise is filtered, this produces what is called a random walk. The integration of this ran-

dom walk will result in velocity and positions moving at different rates during different

runs even though the IMU (and vehicle) are in the same orientation and experiencing the

same accelerations during each run.

m s2⁄
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To give an idea of the performance of a strap-down system, the following quote is

taken from an article [11] written by A. D. King, Chief Engineer of Navigation and Elec-

tro-optic Systems Division of Marconi Electronic Systems. Marconi produces INS for vir-

tually all of the RAF’s combat aircraft as well as many other systems. 

“Many of these instrument errors vary each time you switch the system on - INS have
good days and bad days. To characterize the performance of an INS, you have to
resort to statistics, and take the r.m.s. total error from an ensemble of many
representative missions. A typical standard expected from a ‘good’ INS produces an
error that increases with time (not an entirely linear fashion), and reaches .6 miles
after one hour (referred to as .6 nautical miles/hour system).”

Vibrations

Vibration in a strap-down system can cause many problems with the INS. Generally

great care must be taken to isolate the IMU from any resonance frequencies. In high preci-

sion systems, various tests must be done to try to identify what these frequencies are then

design elaborate mounts to hold the IMU.

Extended Kalman Filter

An extended kalman filter was developed to estimate the biases and drifts of the sys-

tem and then update the navigational solution. The full kalman filter equations are pre-

sented in the Appendix B, but an overview of the process is shown in Figure 4-1 and

further information can be found in Brown and Hwang [12].

Figure 4-1.  Overview of the extended kalman filter’s integration with the INS.
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Kalman filtering relies on a dynamic model of the system. The following error models

for both position and attitude were developed based on derivations by Chatfield [13] and

Rogers [14]. 

Position Error Model

The position of an object in the inertial frame rotated in to the earth frame is given

below.

[4-2]

Taking the derivative of this equation and replacing the derivative of a rotation matrix

with its alternative form results in:

[4-3]

Again, taking the derivative and some more algebra.

[4-4]

Finally the equations of motion for navigation are found. This derivation resulted in the

same answer as previously given. This form is assumed to represent both the computed

and real dynamics of navigation in the earth frame.

[4-5]

Now defining the actual value ( ) as the computed value ( ) minus some error ( )

and substituting this into the above equation ( ) where we are assuming the

equation represents the actual values.

[4-6]

Pe Ri
ePi=

P· i Ωie
i Re

i Pe Re
i P· e+=

P··e Re
i P··e 2Ωie

e P· e Ωie
e Ωie

e Pe+ +( )=

P··e 2Ωie
e P· e Ωie

e Ωie
e Pe+ + ge Se+=

P P δP

P P δ– P=

P··e 2Ωie
e P· e Ωie

e Ωie
e Pe+ +( ) δP

·· e 2Ωie
e δP

· e Ωie
e Ωie

e δPe+ +( )– Se δSe g δg+ + +=



27
Now canceling the computed values on each side and assuming the  and

the error in gravity is also negligible, we have a way to estimate error in the system.

[4-7]

The last remaining term on the right hand side of the equation still has to be defined.

Using the idea that the error in the measured accelerations is due to misalignment of the

system, we can rewrite the right hand side (where the terms with an underline represent

skew matrices).

[4-8]

[4-9]

However this derivation made use of the following definition by Chatfield [13]:

[4-10]

Attitude Error Model

Similar to how the position error was derived, the attitude error model starts off by

looking at a rotation from the body frame to the earth frame. Then the definition for com-

puted values is substituted into the equation and simplified.

[4-11]

[4-12]

[4-13]

where the product of error is zero and the term  cancels itself out. Now post-

multiplying both sides with  and renaming the terms.

[4-14]
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where

[4-15]

[4-16]

[4-17]

The term  is a skew-symmetric form of the attitude error,  is the skew-symmetric

form of the error in the orientation of the instrument cluster, and the  is the skew-sym-

metric error of the angular equivalent of the position error.

Now that we have the nifty definitions of attitude error, we need to find the error in the

earth frame from our calculations of euler angles. Using our definition of the computed

rotation matrix we have

[4-18]

Now pulling out true rotation from the right hand side, substituting in our definition of

error, and simplifying.

[4-19]

Next, take the derivative and solve for error.

[4-20]

[4-21]

[4-22]

Substituting in equation [4-19] and some more algebra.

[4-23]
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[4-24]

Now comes the magic, Chatfield then claims the above equation can be reduced to the

following where the skew error matrices are transformed in to error vectors.

[4-25]

The instrument attitude error vector deferential equation is derived in a similar way.

[4-26]

Summary of Error Model Equations

The complete model is presented below. This filter model is small compared to other

models which have anywhere between 20 and 50 different states, depending on how their

navigational models were defined. Note that there is also the inclusion of two sets of terms

which now makes this an extended kalman filter model. The terms are the errors in bias on

the accelerometers, and drift of the gyros. Each is modelled as a random walk (or could

have modelled them as a Markov process), where the terms with the subscript N on the far

right of the equation are zero mean, random white noise with the appropriate standard

deviation. The purpose of this is to estimate these new parameters, since they are difficult

to determine, and (as in the case of the bias) change greatly depending on temperature,

time, and orientation.

[4-27]
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CHAPTER 5
HARDWARE AND EXPERIMENTAL SETUP

This chapter will provide an overview of hardware typically used in inertial naviga-

tion. Also the two primary sensors used in this work, the IMU and GPS, will be discussed.

Standard IMU Hardware

The two sensors that make up an IMU are the gyros and accelerometers. The gyros are

the most important since they will be used to determine the orientation of the system. This

is crucial since this allows the INS to properly account for gravity and other known biases,

in which even small errors can quickly accumulate in the system.

Gyroscopes

Gyroscopes, or more commonly gyros, are sensors that measure the rotation rate of a

system. This is important so the measurements taken by the IMU can be properly orien-

tated from body coordinates to some navigational reference frame. There are many differ-

ent types of gyros present on the market.

Ring Laser Gyro (RLG)

The RLG shown in Figure 5-1 is very expensive, but accurate single degree of free-

dom sensor for rate determination designed to replace mechanical gyros. It consists of a

laser, a closed pathway (two way) in a triangular shape, mirrors at each corner, and an

interferometer/photodetector. The frequency with which laser pulses travel around the

pathway is constant when the gyro is sitting still. However, as the gyro is rotated the fre-

quency increases or decreases depending on if the photodetector has rotated closer or far-
31
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ther from the emitted laser pulse. Thus rotation rate can be determined from the frequency

change of the laser. A laser beam is typically sent in both directions of the configuration.

Fiber-Optic Gyros (FOG)

The FOG shown in Figure 5-1 is a lower cost alternative to RLG, where the path is a

coil of fiber-optics and there is a beam splitter located at the beginning and end of the coil.

There is also a laser source and a detector so that the frequency of the laser light can be

determined.

MEMS

Micro-Electro-Mechanical Systems (MEMS) is the integration of mechanical ele-

ments, sensors, actuators, and electronics on a common silicon substrate through the utili-

Figure 5-1.  Ring laser gyro shown at top (note the triangular shape) and fiber-optic
gyro diagram shown below.
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zation of microfabrication technology. While the electronics are fabricated using

integrated circuit (IC) process sequences (e.g., CMOS, Bipolar, or BICMOS processes),

the micromechanical components are fabricated using compatible “micromachining” pro-

cesses that selectively etch away parts of the silicon wafer or add new structural layers to

form the mechanical and electromechanical devices. MEMS promises to revolutionize

nearly every product category by bringing together silicon-based microelectronics with

micromachining technology, thereby, making possible the realization of complete sys-

tems-on-a-chip. MEMS is truly an enabling technology allowing the development of

smart products by augmenting the computational ability of microelectronics with the per-

ception and control capabilities of microsensors and microactuators. MEMS is also an

extremely diverse and fertile technology, both in the applications, as well as in how the

devices are designed and manufactured. MEMS technology makes possible the integration

of microelectronics with active perception and control functions, thereby, greatly expand-

ing the design and application space. 

Some pictures of MEMS devices are shown in Figure 5-2 to give an idea of the size.

Here these microscopic creatures appear to be giants compared to the miniature mechani-

cal gears they walk over. 

Another device is shown in Figure 5-3. This one is a 6 DOF IMU made by Integrated

Micro Instruments (which was bought out by Analog Devices Inc.). The device measures

only 5 mm by 9 mm and is complete with three gyros and three accelerometers. 

MEMS is not limited to just sensors but also propulsion. A MEMS thruster made by

TRW Space and Electronics is shown in Figure 5-4 which could be used in space applica-
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tions. This device is capable of delivering 10E-4 Nsec of impulse from the poppy seed

sized cells which contain the lead styphnate fuel propellant.

               

Figure 5-5.  Sensors used in the INS. (left) The Crossbow DMU-HDX which is a solid
state vertical gyro capable of measuring angular rates and accelerations on all three axes.
It also has the capability of measuring the roll and pitch of the device too. (right) Garmin
16LVS OEM GPS which is both a receiver and antenna.

Figure 5-2.  Spider mites walking on some MEMS parts.

Figure 5-3.  MEMS IMU. Figure 5-4.  MEMS thrust-
ers.
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Hardware Used

This section will cover the two main pieces of hardware used in this thesis, the IMU

and the GPS shown in Figure 5-5. An attempt will be made to evaluate their performance

and show their shortcomings when used individually.

Crossbow IMU

The IMU is a solid state vertical gyro (DMU_HDX) from Crossbow Technologies

intended for airborne applications such as UAV control, Avionics, and Platform Stabiliza-

tion. This high reliability, strap-down inertial subsystem provides attitude measurement

with static and dynamic accuracy comparable to traditional spinning mass vertical gyros.

Data will be transmitted by the DMU digitally via a serial connection (RS-232) and con-

verted to the proper format using the conversions in Table 5-1. The gyros on the Crossbow

IMU are low cost, low performance MEMS (Mechanical Electrical Micro-Systems)

gyros. These gyros are much less expensive to produce, but performed at least an order of

magnitude worse than another low cost IMU system being developed by Rommel Manda-

pat [2]. That system uses an IMU developed from Honeywell which has ring laser gyros.

Unfortunately, the gyro performance is a critical element in accounting for gravity in the

system.

Table 5-1: Data conversions for the Crossbow IMU.

Data Equation

X, Y, and Z 
Acceleration

Roll and 
Pitch

Accel G( ) data GR
1.5
215
-------⋅ ⋅=

Angle °( ) data
180
215
---------⋅=
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IMU Performance

Lets look at the performance of the IMU a little closer. As discussed earlier, tempera-

ture plays a role in the accuracy of the IMU. The first test, shown in Figure 5-6, shows the

change in the accelerometer readings over a period of 2.5 hours while the IMU was sitting

still on a table. Since the IMU is capable of recording its’ temperature, we also have a tem-

perature history during this test. The IMU’s accelerations do change slightly (remember

that a offset of only .001 over a period of 30 minutes will result in a position error of 1620

m) but the exact amount of change is difficult to see due to the excessive amount of noise

in the IMU readings. Thus the data will have to filtered prior to using it. 

All of the little offsets on the accelerometers, noise, temperature effects, etc will

amount to positional error, but how much? Again, taking four sets of data while the IMU

was sitting still on a table and subtracting off the mean values of each set, which are

assumed to be the biases. Each data set covered approximately 35 minutes and data was

taken at 10 Hz from the x axis accelerometer. Then integrating the resulting data should

result in zero positional change since it is not moving and biases were taken care of by

subtracting of the mean values (assuming that the noise seen in the system is random

white noise with a zero or constant mean). However as shown in Figure 5-7 this is shown

to not be true. The IMU does think it has moved because the noise, temperature effects,

Angular 
Rates

Internal 
Temperature

Table 5-1: Data conversions for the Crossbow IMU.

Data Equation

Rate ° s⁄( ) data RR
1.5
215
-------⋅ ⋅=

Temperature °C( ) data
5

4.096
------------- 1.375–⋅ 

  44.44⋅=
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biases, etc (all or some) must be changing with time to produce these offsets. The system

thinks that it has move -6410 m, -1054 m, 343 m, or 4673 m depending on which set of

Figure 5-6.  Change in accelerometer reading over time due to
temperature change.

Figure 5-7.  Random movement of system due to
hysteresis. 
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data you look at. Thus not only do the biases change with orientation and temperature, but

also it depends on when you take the data.

Prefiltering IMU Data

The data produced by the IMU is extremely noisy, thus a filter was designed. Matlab’s

signal toolbox was used to accomplish this task. The toolbox is capable of designing all of

the classic FIR and IIR filters. A IIR filter was decided on since it produces the same

results as an FIR filter but with a much lower order. This lower order results in a less com-

putational process. The following specifications for the filter were decided on:

Table 5-2: IMU prefilter specifications.

Specification Value

Pass Band 2 Hz

Stop Band 3 Hz

Stop Band Attenuation -50 dB

Figure 5-8.  This is a plot of the biases as the
IMU was rotated around the z-axis (yaw).
Rotations around the other axes would also
effect the biases, thus this mapping is not
useful since the values are changing nonlin-
early.

Figure 5-9.  Comparison of the unfiltered dat
(top) produced by the IMU and the filtered dat
(bottom) using the Chebyshev II filter.
a
a
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Additionally, the desired filter should not have any ripple in the pass band range, thus

the Equiripple, Elliptic, and Chebyshev I filters were eliminated as possible designs. The

remaining Butterworth and Cheyshev II filters were looked at. After much testing with

various options, the Chebyshev II filter was settled one as the best one for the job and its

performance can be seen in Figure 5-9.

Garmin GPS

The GPS system used in this work is the Garmin 16LVS. Garmin is a common name

in commercial civilian GPS systems, and this OEM device has performance that is on par

with all other GPS systems available currently (i.e. accuracy of about 10 m 95% of the

time) as shown in Figure 5-10. However this GPS was specifically bought because it

included a WAAS (Wide Area Augmentation System) filter which should increase the

accuracy to less than 3 m 95% of the time.

    

Figure 5-10.  This is a test of the GPS accuracy.
The GPS was set in a stationary location for 4
hours. The center of the plot was taken to be the
average latitude and longitude reported by the
sensor. Then the corresponding distances from
the average were calculated. This GPS receiver
is capable of providing the standard 10 meter
accuracy 95% of the time.
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Experimental Setup

The two primary pieces of hardware used for this these have been covered, and now

the rest of the setup will be explained. The IMU and GPS were connected to a 200 MHz

laptop running Linux1 by serial2 connections. The IMU and GPS were powered from a

battery pack. The INS was mounted in a car (with the GPS magnetically mounted to the

outside roof) and driven on local streets.

The navigational software was a multi-threaded program with five main threads.

Threads are a more modern way to do multi-processing using a standard called pthreads or

POSIX Threads. The main thread displayed various information to the screen during the

experiment using menu system written in ncurses. The second thread talked to the IMU

over the serial connection. It also did the prefiltering of the data and then inserted the

information into shared memory. A third thread talked to the GPS and inserted that infor-

mation into shared memory. Another thread performed the navigation using the informa-

tion that was being inserted into shared memory. All of the navigational equations and the

kalman filter were implemented in C. Several libraries had to be written to perform matrix

and vector operations along with numerical integration of differential equations and kal-

man filtering. The final thread was a data logger which wrote selected information from

shared memory to a data file for later analysis and plotting in Matlab.

1. Linux is a free unix clone operating system written by Linux Torvalds.

2. Laptops only come equipped with a single serial port, thus the second serial port needed was a
USB to serial converter.



CHAPTER 6
RESULTS

The experiment is broken up into two parts. The first part is the navigation solution

which does not utilize the kalman filter or the GPS positional corrections. The second part

will include these so the limitation of the IMU and benefits of the kalman filter and GPS

can be seen.

Navigational Solution Only

The first set of results was without the use of the extended kalman filter, to see if it was

really necessary. The INS was driven along the route shown in Figure 6-1. During the test

(although not used in this phase of the test) the GPS was able to see plenty of satellites to

generate good 3D positions. The results of estimating the roll, pitch, and yaw without any

corrections is shown in Figure 6-3. The estimated angles appear to track the true angles to

Figure 6-1.  Map of the entire
route taken from
www.mapquest.com

Figure 6-2.  Number of satellites seen by the
GPS receiver during the test.
41
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an acceptable degree. The IMU is capable of reporting it’s true roll and pitch, but not yaw.

Assuming the performance between estimating the yaw, pitch, and roll angles are the

same, it should not be necessary to require a compass to update the true yaw angle. The

couple degrees of error should not effect INS results much since the car is traveling on flat

roads.

The performance changes when we look at Figure 6-4. The GPS and INS (i.e. using

the navigation equations and IMU data only) differ greatly. Thus the GPS with the kalman

filter must be included into the INS to give any good results.

GPS/INS

After the inclusion of the GPS and kalman filter, the plot shown in Figure 6-5 is much

better. The GPS and INS lie right on top of each other. Taking a closer look at this plot,

Figure 6-6 and Figure 6-7 show that the two do not really lie exactly on top, but rather the

INS transitions smoothly through the GPS points. 

 

Figure 6-3.  INS attitude solution with out extended kalman filter. The estimated roll, pitch,
and yaw are shown by the solid line, while the true roll and pitch reported by the IMU is the
dashed line.
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Looking specifically at Figure 6-6, it can be seen that the IMU is picking up some of

the accelerations in the turn and shifted the position left of the GPS points. But going into

the turn and once the turn is completed, the INS and GPS positions merge back together.

Figure 6-7 is a better example showing how the INS is able to take the discrete GPS

position and the accelerations from the IMU and fit a curve through the two. This level of

continuous positioning can not be offered by GPS alone.

ure 6-4.  INS results without GPS and kal-
n filter integrated into the system.

Figure 6-5.  INS results with GPS and kal-
man filter integrated into the system.

ure 6-6.  This plot shows the interpolating
abilities of the INS system in X and Y.

Figure 6-7.  This plot shows the interpolating
capabilities of the INS system in Z.
Fig
ma

Fig
cap
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Finally the distances traveled during the experiment were calculated and the results

were close as shown in Table 6-1. The car’s odometer was felt to be the most accurate and

the GPS and INS distances are on either side of the value.

The extended kalman filter attempts to estimate the biases and drifts present in the sys-

tem to increase the accuracy of the system. However there appeared to be no difference

between using the estimated biases and drifts from the filter or using constant ones. This is

attributed to the excessive amount of noise from the low cost IMU. Chatfield’s [13] work

was the prime motivator for including these terms in the extended kalman filter, but he

assumed measurements that were much better (i.e. less noisy) than the ones being pro-

duced by the Crossbow IMU. Thus this part of the kalman filter could be eliminated to

reduce computational expense with no loss of performance.

Another test was conducted. The route is shown in Figure 6-8 and the result from the

INS are shown in Figure 6-9. There is a good correspondence between the INS solution

and the route taken. 

Again the influence of the accelerometers can be seen in the data for the intersection of

Archer Road and 34th Street, shown in Figure 6-10. Another interesting result seen in this

plot, is the path just prior to the second stoplight. After the turn was made onto 34th Street,

the vehicle switched from the right lane, to the center lane, and back to the right lane

again. These motions were picked up nicely by the INS.

Table 6-1: Distances traveled as reported by the different systems.

GPS INS Car

km 4.89 5.16

miles 3.04 3.21 3.1
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Several stops were made during the trip due to stoplights on the route. The results are

shown in Figure 6-11 for one of the stops. Ideally the INS solution would not move since

the vehicle is stopped and there would be no accelerations. The GPS positions would

Figure 6-10.  Corner of Archer Road and 34th Street.

Stoplight

Changing lanes

Figure 6-8.  Route taken for
second test: starting at the
commuter parking lot take
North-South Drive, Archer
Road, 34th Street, University,
and back.

Figure 6-9.  Results from the INS which match good
with the map of the route.

Intersection
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move due to the amount of error associated with GPS. The more sensors that can be incor-

porated into the system, the better the results would be. If the velocity of the vehicle, from

the speedometer could be incorporated into the system, this would help the INS to reject

the moving GPS data and the noisy IMU reading and should show that the vehicle is

standing still.

The distances reported by the three systems are shown below. In this case, the GPS

distance were closer to the distance measured by the odometer. This is accounted for by

the fact that the road surface was rougher (i.e. more bumps in the road) which effected the

IMU’s accelerometers.

Table 6-2: Distances traveled as reported by the different systems.

GPS INS Car

km 9.23 9.46

miles 5.73 5.87 5.61

Figure 6-11.  The GPS data and INS solution for one of the
stoplights on Archer Road.
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The final test looked at the effects of loosing the GPS signal for a short period of time.

The INS was first driven in a parking lot and then into a parking garage. Inside the garage,

Figure 6-12.  The results from driving through a parking
garage which blocks the GPS signal. The INS solution is
shown on the left while the GPS readings are shown on the
right. The location of the parking garage and the correct path
are drawn on the plots.

Figure 6-13.  Number of satellites seen during the experi-
ment.

Parking Garage
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the GPS signal was eventually lost. The results are shown in Figure 6-12. After entering

the parking garage, the GPS eventually looses the satellite signal (shown in Figure 6-13)

and is unable to determine its position. Again, the inclusion of other sensors to aid the INS

(in addition to a better IMU) would have produced better results.
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CHAPTER 7
CONCLUSIONS

This thesis has shown the effective combination of two different sensors: GPS and

IMU. Each sensor alone has its own strengths and weaknesses. The “low cost” IMU used

in this work is not capable of running by itself and providing any reasonable positioning

information. GPS alone provides good results, but is only capable of determining position

every second with 10-15 meters of error 95% of the time. The two sensors combined have

the capability of producing good estimates of position in between the one second updates

and overcoming their individual weaknesses. Together they are capable of showing the

small scale movements (i.e. vehicle changing lanes) that are not apparent with GPS alone

due to accuracy and the 1 Hz position rate.



APPENDIX A
ATTITUDE REPRESENTATIONS AND ROTATION MATRICES

When dealing with a subject such as inertial navigation, controlling spacecraft, or

computer vision, it is common to have to deal with multiple reference frames and have to

relate the position of one point in one frame to its position in another reference frame.

Thus it is important to know how to rotate points from one frame to another efficiently and

understand what limitations may be present in various methods. This Appendix will

attempt to familiarize the reader with quaternions, rotations, attitude in space, and euler

angles. Comparisons will be drawn between euler angles and quaternions to show their

strengths and weaknesses.

Fixed Angle Rotations

Typically when trying to relate a common point between different reference frames, a

rotation matrix will be constructed. This matrix will allow easy transformation between

frames.

[A-1]

Here a point (P) is rotated from where it is originally defined, in reference frame a, to

another reference frame b. Not that the rotation matrix R does not include any translation,

but only rotation. Note also that R has the following properties:

Pb Ra
bPa=
50
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When a rigid body is rotated about a fixed inertial reference frame, it is referred to as a

fixed angle rotation. These types of rotations are common in robotics where one is trying

to determine the joint angles of a serial robot relative to some point in space. What is

important to understand, is rotations of this type are made about the inertial axis which is

inconvenient. A better method would be rotations about the body axes. These type of rota-

tions are known as Euler Angles.

Euler Angles

Euler angles are typically though of in terms of roll, pitch, and yaw angle about body

axes. These terms are shown graphically below for a rigid body in space. 

Table A-1: Properties of a rotation matrix.

Rotation Matrix R

R 1– RT=

Ra
b xa ya za

xb

yb

zb

= =

R 1=

columni R( ) rowi R( ) 1= =

Ra
c Rb

cRa
b=

Figure A-1.  Body reference frame attached to a rigid
body. The x-axis points out the front of the vehicle.
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[A-2]

There are two different groups of euler rotations out of the possible twelve. The two

groups are distinguished by their singularity locations. Typically aerospace and naviga-

tional applications use the 1-2-3 rotation where this singularity only effects fighter aircraft

who dive or climb at such steep angles. Some space applications, such as orbits around the

Earth, use the 3-1-3 rotation sequence.

In order to perform these operations on the rigid body, a rotation matrix (R) is used to

find the new orientation of the spacecraft given the old orientation. Given below are the

attitude matrices for rotations about the x, y, and z-axes. 

[A-3]

[A-4]

[A-5]

Table A-2: Comparison of the two major types of rotations, sequential and first and third 
axes rotation

Singularities 
in Pitch

Possible Rotation Sequence

Type I +/-90 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, 3-2-1

Type II 0/180 1-2-1, 1-3-1, 2-1-2, 2-3-2, 3-1-3, 3-2-3

φ
θ
ψ

roll

pitch

yaw

=

Rx φ( )
1 0 0

0 φ( )cos φ( )sin

0 φ( )sin– φ( )cos

=

Ry θ( )
θ( )cos 0 θ( )sin–

0 1 0

θ( )sin 0 θ( )cos

=

Rz ψ( )
ψ( )cos ψ( )sin 0

ψ( )sin– ψ( )cos 0

0 0 1

=
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Now, subsequent rotations about these primary axes can be accomplished by multiply-

ing the matrices together. Thus, successive rotations about the z-axis, x-axis, and y-axis

are given by:

[A-6]

Quaternions

Quaternions where invented by William Rowan Hamilton in 1843. Prior to his discov-

ery, it was believed impossible that any algebra could violate the laws of commutativity

for multiplication. His work introduced the idea of hyper-complex numbers. Here real

numbers can be thought of as hyper-complex numbers with a rank of 1, ordinary complex

numbers with a rank of 2, and quaternions with a rank of 4. Hamilton’s crucial rule that

made this possible:

[A-7]

Hamilton supposedly developed this rule while on his way to a party. When he real-

ized what the solution was, he took out his pocket knife and carved the answer into a

wooden bridge. This rule would forever change mathematics as was known at the time.

Now mathematicians could look at algebra where communitivity did not work. This is

where Gibbs and others developed algebra of vector spaces, and quickly eclipsed Hamil-

ton’s work until recently.

Quaternions, also known as Euler symmetric parameters, are more mathematically

efficient ways to compute rotations of rigid and non-rigid body systems than traditional

methods involving standard rotational matrices or Euler angles. Quaternions have the

advantage of few trigonometric functions needed to compute attitude. Also, there exists a

product rule for successive rotations that greatly simplifies the math, thus reducing proces-

Rzyx ψ θ φ, ,( ) Rz ψ( ) Ry θ( )⋅ Rx φ( )⋅=

i2 j2 k2 ijk 1–= = = =



54
sor computation time. Quaternions also hold the advantage of being able to interpolate

between two quaternions (through a technique called spherical linear interpolation or

slerp) without the danger of singularities, maintaining a constant velocity, and minimum

distance travelled between points.

The major disadvantage of quaternions is the lack of intuitive physical meaning. Most

people would understand where a point was if they were given [1 2 3]. However, few

would comprehend where a point was if given the quaternion [1 2 3 4]. 

This section does not attempt to provide the extensive understanding needed to

employ quaternions but rather a simple introduction.

Quaternion Algebra 

The quaternion is composed of a scalar and a vector part. The scalar is a redundant ele-

ment that prevents singularities from occurring since the four elements are all dependent

upon each other.

1 [A-8]

where the v stands for vector and the r is a scalar real. Given below is a table that will

summarize the important mathematical operations of quaternions.

1. The order of the quaternion elements is not standardized. I have chosen the element order that
NASA uses which is the imaginary part first then the real. Some authors put the real first then
the imaginary which is similar to complex numbers. Thus before you use any equations that uti-
lize quaternions, make sure to understand how the author is arranging the elements.

Table A-3: Quaternion Algebra Summary

Operation Formula

Add / Subtract

Scalar
Multiplication

q qx qy qz qr

T
q1 q2 q3 q4

T
v r, ix jy kz r+ + += = = =

q q'± qx qx'± qy qy'± qz qz'± qr qr'±
T

=

αq αqx αqy αqz αqr

T
=
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Multiplication is an important operation for quaternions, thus we will elaborate on it a

little. 

[A-9]

where

[A-10]

[A-11]

[A-12]

[A-13]

or rewritten in matrix form.

[A-14]

Norm

Quaternion 
Multiplication

a

Conjugate

Inverse

a. Notice that the order of the quaternions in the matrix multiplication 
have been reversed.

Table A-3: Quaternion Algebra Summary

Operation Formula

q qx
2 qy

2 qz
2 qr

2+ + +=

q' q⋅

q4 q3 q– 2 q1

q– 3 q4 q1 q2

q2 q– 1 q4 q3

q– 1 q– 2 q– 3 q4

q'⋅=

q∗ q– x q– y q– z qr

T
=

q 1– q∗
q

-------=

pq r r4 ir1 jr2 kr3+ + += =

r4 p4q4 p1q1– p2q2– p3q3–=

r1 p4q1 p1q4 p2q3 p3q2–+ +=

r2 p4q2 p1q3– p2q4 q3q1+ +=

r3 p4q3 p1q2 p2q1– p3q4+ +=

pq

r1

r2

r3

r4

p4 p3– p2 p1

p3 p4 p– 1 p2

p– 2 p1 p4 p3

p– 1 p– 2 p– 3 p4

q1

q2

q3

q4

q4 q3 q– 2 q1

q– 3 q4 q1 q2

q2 q– 1 q4 q3

q– 1 q– 2 q– 3 q4

p1

p2

p3

p4

= = =
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The last part is the same representation present in the table of quaternion operations

above. Notice how only the signs change when we reverse the order of the multiplication

in the matrix-vector form of the quaternion multiplication. This is because of the cross

product relationship with the vector part: .

Rotations of Rigid Bodies in Space.   

Quaternions are able to represent a unique rotation in space. To perform a rotation ( )

of a rigid body about an arbitrary moving/fixed axis (e) in space, the quaternion represen-

tation of this operation is:

          [A-15]

[A-16]

Notice that only one sine and one cosine function call is needed to calculate a quater-

nion, where euler would require three sine and three cosine function calls, one each for

roll, pitch, and yaw. Since trigonometric function calls are computationally expensive, this

is a great savings.

Rotation of a point in space with a quaternion is done as follows:

[A-17]

[A-18]

Since the quaternion has four elements, the point P must have a zero appended on to it in

place of the real part of the quaternion. Thus the point P values constitute the imaginary

(vector) part of the quaternion. This rotation can also be done similar to euler and fixed

q p× p q×–=

φ

q1 3– e
φ
2
--- 

 sin⋅= q4
φ
2
--- 

 cos=

e e1 e2 e3

T
=

Pb qPaq∗=

Pa x y z 0
T

=
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angle rotations by creating a rotation matrix from the quaternions. The attitude matrix (A)

or rotation matrix (R) for this is

[A-19]

Successive rotations can be accomplished by multiplying the attitude matrices together. 

Hopefully it can be seen that quaternions are better than other Euler operations to

determine attitude. Quaternions lack singularities due to one redundant element. They also

lack the computationally intensive trigonometric functions, and contain a simplified way

to determine successive rotations about an arbitrary axis.

Attitude Errors in Quaternions

Since quaternions can represent attitudes and not just rotations, it is important to be

able to calculate the difference between where you want to point and where you are point-

ing. For example, say you had to control where a satellite was to point and you need an

error term to feed in to your control system.

[A-20]

where  is the quaternion error,  is the attitude of the satellite, and  is the target atti-

tude. Note that the quaternions are in reversed order in the matrix and the spacecraft

quaternion has the imaginary part negated due to the inversion.

A q( ) R

q1
2 q2

2 q3
2–– q4

2+ 2 q1q2 q3q4+( ) 2 q1q3 q2– q4( )

2 q1q2 q3q4–( ) q1
2– q2

2 q3
2– q4

2+ + 2 q2q3 q1q4+( )

2 q1q3 q2q4+( ) 2 q2q3 q1q4–( ) q– 1
2 q2

2– q3
2 q4

2+ +

= =

qE qS
1– qT

qT4 qT3 q– T2 qT1

q– T3 qT4 qT1 qT2

qT2 q– T1 qT4 qT3

q– T1 q– T2 q– T3 qT4

q– S1

q– S2

q– S3

pS4

= =

qE qS qT
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Summary of Quaternions

• Quaternions have singularities at angles of rotation of 180 degrees, but this is gener-
ally not a problem. Typically if an application encounters a rotation greater than 180
degrees, it is shorter to go in the other direction.

• The quaternion is a compact method of representing a unique rotation with only four
elements with out the redundant information present in euler rotation’s nine elements.

• Quaternions are difficult to visualize without extracting out the axis of rotation and
rotation angle. Although the quaternion can be thought of as a sphere in 4D space, this
does the majority of people little good, since they can not perceive a 4D surface.

• The use of quaternions allows you to compute the shortest distance between two dif-
ferent attitudes. If lerp is used, the resulting velocity between the two attitudes will not
be constant but more bell shaped. If slerp is used, the resulting velocity will be con-
stant. This process is difficult using euler angles, which contain many singularities that
must be avoided and the solution is not guaranteed to be the shortest distance. Also the
solutions that result from euler angles are not uniformly distributed along the surface
of a sphere. Thus it again is not always possible to transition from one orientation to
another using the shortest distance, because these empty areas must be skirted around
to arrive at the desired location.



APPENDIX B
KALMAN FILTERING AND ESTIMATION

This Appendix will introduce the reader to kalman filtering. First some background

material will be given, then a simple explanation of the fundamental concepts. Further

explanation about kalman filtering can be obtained in Brown and Hwang [12].

Introduction

The kalman filter is an alternative way to calculate the minimum mean-squared error

(MMSE) using state space. R. E. Kalman, a graduate research professor in the electrical

engineering department of University of Florida, first developed the filter in 1960. Some

of the advantages that the kalman filter has over other estimators are: computational effi-

cient by recursively processing noisy data, real-time estimator, can be adapted to non-sta-

tionary signals, handle complicated time-variable multiple-input/output systems, vector

model random processes under consideration.

The kalman filter estimates a process by using a form of feedback control. The filter

estimates the process state at some point in time and then obtains feedback in the form of

noisy measurements. The filter equations fall into two groups: time update equations and

measurement update equations. The time update equations are responsible for projecting

forward (in time) the current state and error covariance estimates to obtain the a priori esti-

mates for the next time step. The measurement update equations are responsible for incor-

porating a new measurement into the a priori estimate to obtain an improved a posteriori
59
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estimate. The time update equations can also be thought of as predictor equations, while

the measurement update equations can be thought of as corrector equations.

Kalman Filter Theory

This section will give a brief derivation of the kalman filter which follows the deriva-

tion in Brown and Hwang [12]. The kalman filter assumes the random process to be esti-

mated is of the form1:

 [B-1]

where x is a state value, u is a control effort, w is white noise with known covariance.

When measurements are taken of the process at discrete moments in time, they occur

according to the following relationship:

[B-2]

where z is a noisy sample, D is the direct transmission of the input to the output, C is the

ideal (noiseless) connection between the measurement and the state, and v is measurement

error. 

This process can be modelled discretely in the following form, assuming there are not

control inputs u to the system.

[B-3]

[B-4]

The system error is defined as:

[B-5]

1. Typically the state space system is represented as , and this form will be used when
discussing the controller. However, during the discussion of the kalman filter the above notation
( ) will be used since this form is more common in kalman filter literature, and

 will be used otherwise. There is no difference between the representations other
than notation.

x· Ax Bu+=

x· Fx Bu+=

x· Ax Bu+=

x· Fx Bu Gw+ +=

z Hx Du v+ +=

xk 1+ φkxk wk+=

zk Hkxk vk+=

ek
– xk x̂k

––=
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where  is the best estimate prior to receiving a measurement at time . The error

covariance matrix at this time is:

[B-6]

where E[*] is the expected value. Now a linear blending of both the estimate and a mea-

sured value is taken.

[B-7]

where  is the new updated estimate, z is the measured value, and K is a weighting value

that determines the amount of error between the measured value and the best estimate.

This gain is referred to as the kalman gain which is capable of changing value over time.

Now looking at the error covariance of this new updated estimate, we get the following.

[B-8]

[B-9]

Now, after some algebra and realizing that  is the estimation error which is

uncorrelated with the measurement error v, the following expression results for the error

covariance.

[B-10]

This is a general expression for updating the error covariance matrix, and it applies for

any value of K. What is needed is a K that will minimize the individual terms along the

main diagonal of P since these represent the estimation error variances for each state that

is being estimated.
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The gain that minimizes the mean-square estimation error is found by taking the deriv-

ative of the general expression above with respect to K, setting it equal to zero, and solv-

ing for K. The resulting gain is referred to as the kalman gain.

[B-11]

Implementing The Kalman Filter

The covariance matrices for both the system noise (w) and the measurement noise (v)

are given by:

[B-12]

   [B-13]

The kalman filter is executed in a loop which involves calculating propagation error (P)

and updating the estimate from a measured value (z). The first step is to project ahead and

calculate the state estimates and errors.

[B-14]

[B-15]

where u is the control effort and w is the process noise. Next the kalman gain is calculated

using the predicted error ( ) in the system and the covariance of the measurement noise

( ). The predicted error is divided by itself plus the measurement error, which has the

effect of reducing the kalman gain as the predicted error reduces.

[B-16]

The current estimate is then updated by the weighted (kalman gain) difference

between the measured data and the noiseless model. Notice that if there is no noise or dis-
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turbances in the system and all dynamics are properly modeled, then the kalman gain is

multiplied by zero.

[B-17]

From here on out, we will assume that there is no direct transmission of the control

effort to the output of the system, thus .

Table B-1: Description of kalman filter variables.

Variable Description

Vector containing the current state and parameters at time k.

Vector containing the current state and parameter estimates at time 

k before updating the error between  and .

Vector containing the state and parameter estimates at the next time 
sample.

Matrix containing the current error covariance for the states and 
parameters.

Matrix containing the current error covariance for the estimated 
states and parameters.

Vector containing the current measured states which contain noise.

  Continuous and discrete output matrix which contains the noiseless 
connections between the states and the output of the system at time 

k.

  Continuous and discrete matrix containing the error covariance of 
the measurement noise for the system.

  Continuous and discrete matrix containing the error covariance of 
the process noise for the system.

  Continuous and discrete state transition matrix.

  Continuous and discrete gain matrix.

Kalman gain matrix which weight the amount of influence on the 

error between system model ( ) and the measured data ( ).

Process noise.

Measurement noise.
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Extended Kalman Filter Design

The extended kalman filter is based on the standard kalman filter, but with a first-order

Taylor approximation of both the state transition matrix and the observations equations

about the current estimated state trajectory. This allows nonlinear equations to be used in

the kalman filter, which are of the form:

[B-18]

[B-19]

The non-linearity may enter into the equations either in the dynamics of the system or

in the observation of the states. Thus the state transition matrix and observation matrix

become:

Figure B-1.  Kalman filtering process at work, taking noisy input measure-
ments and producing filtered output measurements. Note that the initial val-
ues of the state estimate ( ) and error covariance ( ) are zero.
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[B-20]

[B-21]

where both of these terms are now the Jacobian matrix with respect to x.

                                     [B-22]

Augmented Kalman Filter

The kalman filter can be used for estimating unknown parameters. This can be accom-

plished by augmenting the state vector (i.e. adding the parameters to be estimated in to the

state vector) and modifying both the state transition matrix and the observation matrix.

The new state transition matrix will take the form:

[B-23]

where  is the state transition matrix associated with the dynamics of the system to

be controlled.  is the coupling between the system and the parameters to be esti-

mated. Finally,  is the model of the estimated parameters. There are several mod-

els that can be used for the augmented parameters.

Augmenting a kalman filter increases the numerical complexity of the filter, thus it is

desirable to limit the parameters to be estimated in order achieve good run-time perfor-

mance. The augmented kalman filter is limited by its observability to the number of
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parameters it can estimate. Thus it is important to check the observability of the kalman

filter prior to attempting to estimate parameters otherwise the estimated parameters could

diverge greatly from the real values and lead to instability.

Estimation Models

The models used for estimation are application specific, thus there is no general model

that is used in every situation. Shown below are several different ways to model parame-

ters that are being estimated.

Controllability and Observability of the Kalman Filter

The contollability and observability of a system is important since you cannot control

what is not observable nor what is not controllable. If a system is determined to not be

controllable, then no matter what type of controller you attempt to implement, you will not

be able to control the system. For this section we will use the standard definition of a state

space system, shown below.

[B-24]

where x is the state vector and u is the control effort.

Table B-2: Various models used in the kalman filter.

Type Model Description

Random Constant A parameter that is modelled as a random constant 
has a fixed, but random amplitude with the initial 

conditions as a Gaussian with zero mean and a con-
stant variance.

Random Walk A random walk estimation model varies from one 
integration step to another. Here the parameters are 

modelled as white noise with zero mean and the 
appropriate mean-squared values.

Markov Process The Markov process model for parameter estimation 
allows estimates from one integration step to the next 

to be exponentially correlated.

A 0=

A randn var( )=

A eat=

x· Ax Bu+=
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Controllability

The controllability matrix for a linear system of size n is defined below. In order for a

system to be fully controllable, the controllability matrix must be full rank.

[B-25]

Observability

The observability matrix for a linear system defines the states that can be observed by

a control system. Thus for a system to be fully observable, it must have full rank of the

observability matrix.

[B-26]

Mc B AB A2B … An 1– B=
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